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Abstract

In this text we deal with Rakić duality principle. We search for a
connection between Osserman and Rakić curvature tensor. We prove
that 3-dimensional Rakić is Osserman. We investigate Rakić duality
using Fiedler’s skew-symmetric decomposition, and prove that Osserman
curvature tensor with constant Fiedler’s signs is Rakić.

1 Introduction

Let us begin with the basic notation and terminology which are used throughout
this work. Let R be an algebraic curvature tensor on a vector space V equipped
with an indefinite metric g of the signature (ν, n− ν). The sign εX = g(X,X)
denotes the norm of X ∈ V, and it determines various types of vectors. We say
that X ∈ V is timelike (if εX < 0), spacelike (εX > 0), null (εX = 0), nonnull
(εX 6= 0), or unit (εX ∈ {−1, 1}). The curvature operator R is connected
with R via equation R(X,Y, Z,W ) = g(R(X,Y )Z,W ). If (E1, E2, ..., En) is
an orthonormal basis of V, then we use short notations εi = εEi and Rijkl =
R(Ei, Ej , Ek, El). For the initial definitions and deeper explanations of this
topic, the reader can consult Gilkey’s books [9, 10].

The Jacobi operator JX : V → V is a natural operator defined by
JX(Z) = R(Z,X)(X) for all Z ∈ V. In the case of nonnull X ∈ V, JX
preserves nondegenerate hyperspace {X}⊥ = {Y ∈ V : X ⊥ Y }, and we have
the reduced Jacobi operator J̃X : {X}⊥ → {X}⊥, given by J̃X = JX |{X}⊥ .

We say that R is an Osserman curvature tensor if the characteristic polyno-
mial of JX is constant on both pseudo-spheres, in particular on positive (εX = 1)
and negative (εX = −1) one. In a pseudo-Riemannian setting, Jordan normal
form plays a crucial role, since characteristic polynomial does not determine
the eigen-structure of a symmetric linear operator. We say that R is a Jordan
Osserman curvature tensor if the Jordan normal form of JX is constant on both
pseudo-spheres. An Osserman curvature tensor, whose Jacobi operator JX is
diagonalizable for all nonnull X, we call diagonalizable Osserman.

In the Riemannian setting (ν = 0), it is known that a local two-point
homogeneous space (flat or locally rank one symmetric space) has a constant
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characteristic polynomial on the unit sphere bundle. Osserman wondered if the
converse held [15], and this question has been called the Osserman conjecture
by subsequent authors. During the solution of some particular cases of the
conjecture, the implication

JX(Y ) = λY ⇒ JY (X) = λX (1)

appeared naturally, and if it holds, it can significantly simplify some calculations.
The first results in this topic are given by Chi [7], who proved the conjecture
in the cases of dimensions n 6= 4k, k > 1. In his work he used the fact that
(1) holds for extremal eigenvalues λ of the Jacobi operator. Rakić [16] proved
the correctness of (1) for every eigenvalue λ of the Jacobi operator, and this
statement has been called Rakić duality principle [9]. After that, Rakić duality
is reproved by Gilkey [9], and it become a beneficial tool for the solution of the
conjecture. Moreover, the best results in this topic gave Nikolayevsky [12, 13,
14], who used Rakić duality [13] to prove Osserman conjecture in all dimensions,
except some possibilities in dimension n = 16.

The variant of the Osserman conjecture has been appeared in a pseudo-
Riemannian setting. For example, in the Lorentzian setting (ν = 1), an Osser-
man manifold necessarily has a constant sectional curvature [5]. Observation
of Osserman manifolds in the signature (2, 2) become very popular, and it is
worth noting results from [6], which are based on the discussion of possible
Jordan normal forms of the Jacobi operator.

This is why we start to investigate the duality principle for Osserman cur-
vature tensor in a pseudo-Riemannian setting. In a pseudo-Riemannian setting,
the implication (1) looks inaccurate, and therefore we corrected it in the follow-
ing way [1, 4].

Definition 1 (Rakić duality) We say that a curvature tensor R satisfies
Rakić duality for the value λ, if for all mutually orthogonal units X,Y ∈ V
holds

JX(Y ) = εXλY ⇒ JY (X) = εY λX. (2)

We say that R is Rakić if it satisfies Rakić duality for all λ ∈ R.

The Rakić duality for Osserman curvature tensor works nicely for every known
example, which motivated us to post the following conjecture.

Conjecture 1 Osserman pseudo-Riemannian curvature tensor is Rakić.

Unfortunately we failed to prove this conjecture in general. In our previous work
we gave the affirmative answer only for the conditions of small index (ν ≤ 1)
[1, 4], low dimension (n ≤ 4) [1, 4, 3], and some possibilities with small numbers
of eigenvalues of the reduced Jacobi operator [2]. Seeing that Rakić property
is natural for Osserman curvature tensor (at least in the Riemannian setting),
one can ask if the converse held.

Conjecture 2 Rakić pseudo-Riemannian curvature tensor is Osserman.
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2 Three-dimensional case

In this section we deal with three-dimensional Rakić pseudo-Riemannian curva-
ture tensor. Let us start with the following universal lemma.

Lemma 1 If JX(Y ) = εXλY and JY (X) = εY λX, then for all α, β ∈ R holds
JαX+βY (εY βX − εXαY ) = εαX+βY λ(εY βX − εXαY ).

Proof. This lemma is a consequence of the straightforward calculations.

JαX+βY (εY βX − εXαY )

= R(εY βX − εXαY, αX + βY )(αX + βY )

= R(εY βX, βY )(αX + βY ) +R(−εXαY, αX)(αX + βY )

= −εY αβ2JX(Y ) + εY β
3JY (X)− εXα3JX(Y ) + εXα

2βJY (X)

= β(εXα
2 + εY β

2)JY (X)− α(εXα
2 + εY β

2)JX(Y )

= (εXα
2 + εY β

2)(βεY λX − αεXλY )

= εαX+βY λ(εY βX − εXαY )

�

Let us investigate Conjecture 2 for low dimension n = 3. It is known
that three-dimensional Einstein (consequently it holds for Osserman) curvature
tensor necessarily has constant sectional curvature.

Theorem 1 Three-dimensional Rakić curvature tensor is of constant sectional
curvature.

Proof. In order to apply Rakić property we need to show that there is a pair
(X,Y ) of mutually orthogonal units, where Y is an eigenvector of JX . Let
(E1, E2, E3) be an arbitrary orthonormal basis of V, such that ε1 = ε2. The
matrix of the Jacobi operator JE3 is

JE3
=

 ε1R1331 ε1R2331 0
ε2R1332 ε2R2332 0

0 0 0

 ,

and therefore its reduced Jacobi operator J̃E3
has characteristic polynomial

x2 − (ε1R1331 + ε2R2332)x+ ε1ε2R1331R2332 − ε1ε2R2331R1332 = 0.

Let D be a discriminant of the previous quadratic equation, then

D = (ε1R1331 + ε2R2332)2 − 4ε1ε2R1331R2332 + 4ε1ε2(R1332)2.

Because of ε1 = ε2, we have ε1ε2 = (ε1)2 = 1, and thus

D = (ε1R1331 − ε2R2332)2 + 4(R1332)2 ≥ 0.
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If D > 0 then our quadratic equation has two distinct real roots, which repre-
sents two distinct eigenvalues of J̃E3 , and hence there are two (nondegenerate)
one-dimensional eigenspaces. Otherwise, D = 0 gives ε1R1331 = ε2R2332 and
R1332 = 0. Thus J̃E3

is diagonal with double root which is associated with a
two-dimensional eigenspace.

The previous text proved that there exists an orthonormal basis (X,Y, Z),
such that Y and Z are eigenvectors of JX . Consequently, by Rakić duality, X is
an eigenvector of JY . The conditions of Lemma 1 hold, and hence εY βX−εXαY
is an eigenvector of JαX+βY . Moreover, for α, β ∈ R such that α2εX+β2εY 6= 0,
both αX + βY and εY βX − εXαY are mutually orthogonal and nonnull. The
Jacobi operator is symmetric linear operator and therefore

g(JαX+βY (Z), εY βX − εXαY ) = g(Z,JαX+βY (εY βX − εXαY )) = 0.

Hence JαX+βY (Z) is orthogonal to both εY βX − εXαY and αX + βY , which
gives JαX+βY (Z) ⊥ Span{X,Y } = Span{Z}⊥, and consequently Z is an eigen-
vector of JαX+βY . According to Rakić duality, αX + βY is an eigenvector of

JZ , which is possible only if Span{X,Y } is a two-dimensional eigenspace of J̃Z .
Similarly one can prove that Span{X,Z} is an eigenspace of J̃Y . Thus arise

R(X,Y, Y,X)

εXεY
=
R(Y,Z, Z, Y )

εY εZ
=
R(X,Z,Z,X)

εXεZ
= κ,

and R(Y,X,X,Z) = R(X,Y, Y, Z) = R(X,Z,Z, Y ) = 0, which obviously com-
pletely describes R, and therefore R has constant sectional curvature κ. �

3 Rakić duality and Fiedler’s tensor

In this section we try to describe Rakić duality property. Let (E1, ..., En) be an
arbitrary orthonormal basis of the vector space V of the signature (ν, n − ν).
Let us start with the left hand side of the equation (2),

JX(Y ) = εXλY. (3)

The equation (3) means that Y is an eigenvector of JX for the eigenvalue εXλ.
The Jacobi operator can be expressed using the curvature tensor on the following
way

JX(Y ) = R(Y,X)X =
∑
l

εlR(Y,X,X,El)El.

If we set nonnull X =
∑
i αiEi and Y =

∑
i βiEi, the equation (3) become∑

i,j,k,l

εlβiαjαkRijklEl = εXλ
∑
l

βlEl,

and finally

(∀l)
∑
i,j,k

εlβiαjαkRijkl = εXλβl.
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According to work of Fiedler [8], and later development by Gilkey [8, 9], for
every algebraic curvature tensor R, there exist finite numbers of skew-symmetric
tensors Ω of order 2 (i.e. the coordinates of Ω satisfy Ωij = −Ωji), such that R
has a representation

Rijkl =
∑
Ω

εΩ
1

3
(2ΩijΩkl + ΩikΩjl − ΩilΩjk) ,

with εΩ ∈ {−1, 1}. Using this fact the equation (3) is equivalent to

(∀l)
∑
Ω

∑
i,j,k

1

3
εΩεlβiαjαk (2ΩijΩkl + ΩikΩjl − ΩilΩjk) = εXλβl.

We can simplify the previous formula using the symmetry by j and k.∑
i,j,k

βiαjαkΩikΩjl =
∑
i,k,j

βiαkαjΩijΩkl =
∑
i,j,k

βiαjαkΩijΩkl

∑
i,j,k

βiαjαkΩilΩjk =
∑
i,k,j

βiαkαjΩilΩkj = −
∑
i,j,k

βiαjαkΩilΩjk = 0

Therefore the equation (3) is equivalent to

(∀l)
∑
Ω

∑
i,j,k

εΩεlβiαjαkΩijΩkl = εXλβl.

Let us split sums on the left hand side

(∀l)
∑
Ω

εΩεl
∑
i,j

αiβjΩij
∑
k

αkΩkl = −εXλβl.

If we introduce the short notation

ΘΩ
PQ =

∑
i,j

µiνjΩij ,

for P =
∑
i µiEi and Q =

∑
j νjEj , the equation (3) become equivalent to

(∀l)
∑
Ω

εΩΘΩ
XY ΘΩ

XEl
= −εlεXλβl. (4)

Using (3)⇔ (4) and ΘΩ
Y X = −ΘΩ

XY , we get the equivalent form of Rakić duality
condition (2)

(∀l)
∑
Ω

εΩΘΩ
XY ΘΩ

XEl
= −εlεXλβl ⇒ (∀l)

∑
Ω

εΩΘΩ
XY ΘΩ

Y El
= εlεY λαl. (5)

Let us sum all n equations (1 ≤ l ≤ n) from (4) multiplied by βl∑
l

βl
∑
Ω

εΩΘΩ
XY ΘΩ

XEl
= −

∑
l

βlεlεXλβl,
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After the substitutions
∑
l βlΘ

Ω
XEl

= ΘΩ
XY and

∑
l εlβ

2
l = εY we get important

equation. ∑
Ω

εΩ(ΘΩ
XY )2 = −εXεY λ. (6)

Let us stop here to notice the following interesting statements in the case when
Fiedler’s terms have a constant signs, i.e. εΩ = const.

Theorem 2 If R is a curvature tensor with εΩ = const, then it satisfies Rakić
duality for the value 0.

Proof. If the sign εΩ is constant for all skew-symmetric tensors Ω in the sense
of Fiedler, then the equation (6) gives

0 ≤
∑
Ω

(ΘΩ
XY )2 = −εΩεXεY λ.

The value λ = 0 gives
∑

Ω(ΘΩ
XY )2 = 0 and therefore ΘΩ

XY = 0 for all Ω. The
formula (5) obviously holds and R satisfies Rakić duality for the value 0. �

Theorem 3 A diagonalizable Osserman curvature tensor R with εΩ = const is
Rakić.

Proof. Like the previous proof, the equation (6) with εΩ = const gives
0 ≤ −εΩεXεY λ. Since by Theorem 2, R satisfies Rakić duality for the value
0, we set λ 6= 0, and therefore εΩεXεY λ < 0. It implies the constant sign of
εY , which proves that an eigenspace of JX for an eigenvalue εXλ has the same
type of vectors. Especially, there are no nonzero null vectors in the eigenspace
of JX for an eigenvalue εXλ. According to our previous work [1, 4], diagonal-
izable Osserman curvature tensor, such that JX has no null eigenvector for an
eigenvalue εXλ, satisfies the duality principle for the value λ, which completes
the proof. �

The diagonalizability from Theorem 3 is a natural condition. Let us remark
that, according to Gilkey and Ivanova [11], Jordan Osserman curvature tensor
of a non-balanced signature (n 6= 2ν) is necessarily diagonalizable.
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